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Information processing in complex systems is often found to be maximally efficient close to critical states
associated with phase transitions. It is therefore conceivable that also neural information processing operates
close to criticality. This is further supported by the observation of power-law distributions, which are a
hallmark of phase transitions. An important open question is how neural networks could remain close to a
critical point while undergoing a continual change in the course of development, adaptation, learning, and
more. An influential contribution was made by Bornholdt and Rohlf, introducing a generic mechanism of
robust self-organized criticality in adaptive networks. Here, we address the question whether this mechanism is
relevant for real neural networks. We show in a realistic model that spike-time-dependent synaptic plasticity
can self-organize neural networks robustly toward criticality. Our model reproduces several empirical obser-
vations and makes testable predictions on the distribution of synaptic strength, relating them to the critical state
of the network. These results suggest that the interplay between dynamics and topology may be essential for
neural information processing.
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I. INTRODUCTION

Dynamical criticality has been shown to bring about op-
timal information transfer and storage capabilities �1–3� and
sensitivity to external stimuli �4,5�, making it an attractive
concept for neural dynamics �6–8�. Evidence for dynamical
criticality in neural networks is found in vitro, in cell cultures
and in slices of rat cortex �1�, and in vivo �9�, where ava-
lanches of neuronal activity are observed to follow a power-
law size distribution with an exponent of −1.5. On a larger
spatial scale of human electroencephalography, measure-
ments of electrical activity in the brain show that the power
spectrum of background activity follows a power law
�7,10–12�, which has also been linked to criticality �12,13�.
Recently, also measures of phase synchronization were dem-
onstrated to follow power-law scaling in functional magnetic
resonance imaging �MRI� and magnetoencephalographic
�MEG� data recorded from humans, indicating critical dy-
namics �14�.

Despite the empirical evidence, few generative mecha-
nisms explaining the purported criticality have been pro-
posed. What is needed is a robust mechanism that drives the
system back to the critical state after a perturbation. In the
theoretical literature, self-organized criticality �SOC�—the
ability of systems to self-tune their operating parameters to
the critical state—has been discussed for a long time �15�. A
major new impulse came from the discovery of network-
based mechanisms, which were first reported in �16� and
explained in detail in �17,18�. These works showed that
adaptive networks, i.e., networks combining topological evo-
lution of the network topology with dynamics in the network
nodes �19,20�, can exhibit highly robust SOC based on
simple local rules.

The essential characteristic of adaptive networks is the
interplay between dynamics on the network and dynamics of

the network. In the case of neural networks the dynamics on
the networks is the activity of the individual neurons. Dy-
namics of the network appear in many forms, including the
rewiring of neural connections in the developing brain and
synaptic plasticity, the dynamical change in synaptic
strength. In real-world neural networks the formation of con-
nections and all but the fastest mechanism of plasticity are
clearly much slower than the dynamics of the neurons. For
this reason both types of dynamics can be assumed to take
place on separate time scales: on a short time scale the dy-
namics of neuronal activity occurs in a network with quasi-
static topology. Only on a longer time scale the topology
evolves depending on the time-averaged and therefore also
quasistatic patterns of neuronal activity.

The basic mechanism of adaptive SOC can be explained
as follows �18�: dynamics on networks are in general sensi-
tive to the network topology, the specific pattern of nodes
and links. Remarkably, even the dynamics in a single net-
work node may provide information on global topological
order parameters if the node is observed for sufficient time.
Thus, the dynamics explores the network making certain glo-
bal topological properties locally accessible in every network
node. In adaptive networks this information can then be uti-
lized by a local topological update rule that slowly drives the
network toward criticality.

The investigation of conceptual models of adaptive SOC
�18,20� has shown that the presence of this type of self-
organization in human neural networks is plausible. Indepen-
dently, robust SOC has recently been demonstrated in neural
models �21–23�, which also fall into the class of adaptive
networks. The aim of the present work is to assess whether
adaptive SOC can self-organize a realistic model of neural
network robustly to criticality. In particular, we consider to-
pological self-organization driven by spike-time-dependent
synaptic plasticity �STDP�. We find that the final state the
network approaches is critical, albeit different from the states
that were approached in previous models using activity-
dependent �homeostatic� mechanism of plasticity.*meisel@mpipks-dresden.mpg.de
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II. DESCRIPTION OF THE MODEL

We consider a network of N leaky integrate-and-fire neu-
rons. In contrast to previous works, which focused on inhibi-
tory interactions �22�, we study a network of 80% excitatory
to 20% inhibitory neurons, which is realistic for cortical net-
works �24�. In the absence of a stimulus, the membrane po-
tential vi of neuron i follows the equation

d

dt
vi = −

1

�m
�vi − V0� �1�

describing an exponential return to the resting potential V0
on a time scale given by �m. Whenever a neuron receives an
input from a presynaptic neuron j we update the membrane
potential by adding �Vrev−vi�gc if the presynaptic neuron is
excitatory or −�Vrev−vi�gc if the presynaptic neuron is inhibi-
tory. If the update causes the membrane potential to reach or
exceed the threshold Vth then the potential is reset to Vreset for
a refractory period �ref after which it evolves again according
to Eq. �1�. Upon reaching the threshold the neuron fires a
spike, which reaches the connected postsynaptic neurons af-
ter a travel-time delay �delay=1.0 ms.

Note that spikes can only be fired directly upon receiving
an excitatory input. Consequently spikes are fired at times
that are integer multiples of the travel-time delay. Thus, the
travel-time defines a natural time step which we also use as
the time step of our simulation. Between spikes the mem-
brane potential of a neuron is updated using the analytical
solution of Eq. �1�. The system can thus be simulated without
suffering from the inaccuracies that are often introduced by
numerical integration.

The topology of the network changes due to STDP
�25,26�, which is believed to alter the topology of the net-
work on a time scale that is much slower than the spiking
dynamics �some hundred milliseconds to some seconds
�25,27��.

Exploiting the time-scale separation we proceed as fol-
lows: we simulate the dynamics on the network according to
the rules described above for a long time tsim. Only when the
simulation has finished the topology is changed according to
an update rule explained below. The time scale tsim is chosen
sufficiently long for the system to reach a dynamical attrac-
tor. Specifically, we assume that this is the case when the
neurons have fired in average 100 spikes or all activity on the
network has stopped. Once the attractor has been reached
further simulation does not reveal additional information, as
the system remains on the attractor �see, e.g., �17��. The ex-
act choice of tsim is therefore of no consequence, provided
that it is sufficiently long. In the present model, this was
confirmed numerically.

The STDP update rule captures the effect of the temporal
order of spikes between pairs of neurons �25–27�. Following
Refs. �28,29�, we model this behavior by introducing internal
variables xi and ni linked to the activity of a neuron i. The
variable xi encodes the time that has passed since the last
spike of neuron i, while ni counts the total number of spikes
observed so far. At all times ts at which neuron i spikes, both
xi and ni are increased by 1. Between spikes xi decays with a
time constant �STDP, such that

d

dt
xi = −

xi

�STDP
+ �

ts
��t − ts� . �2�

The temporal order of spikes between two neurons i , j can be
captured by introducing one more variable cij. When neuron
i spikes this variable is decreased by xj, while when j spikes
it is increased by xi. Therefore, the variable will be increased
if the neurons spike in the sequence i , j, while it is decreased
if the neurons spike in the sequence j , i. The increase or
decrease is more pronounced in neurons spiking shortly after
each other.

At the end of the simulation run the topology is updated
depending on the variables introduced above. Depending on
the specific question under consideration we use either one
of two variants of the topological update rule. The first mim-
ics the formation of neural connections in the developing
brain where activity-dependent processes are considered to
be a prominent mechanism in shaping topographic maps dur-
ing the development of cerebral connectivity �30,31�. At the
time of the topology update, a random cij is picked. If
cij / �ni+nj� is greater or equal than the threshold �STDP=0.4,
a new synapse from neuron i to neuron j with gc=0.15 is
created; if it is smaller than the threshold and a synapse from
neuron i to neuron j exists, this synapse is deleted.

For the investigation of the self-organization of synaptic
conductance, we use a variant update rule, in which we alter
the conductance of a synapse from neuron i to j as gij
=wijgc. If cij / �ni+nj� is greater or equal than the threshold
�STDP, the weight wij is increased; if it is smaller, wij is de-
creased by a fixed value �, unless this would cause wij to
become negative or exceed 1.

After the update rule has been applied, we restart the sys-
tem by assigning random membrane potentials to the neu-
rons and setting 2% of the neurons above the threshold. The
procedure of simulating the dynamics and then applying the
topology update rule is iterated to allow the network topol-
ogy to relax to a self-organized state.

While our model aims to be as realistic as possible, there
are three particulars of real brain networks that we cannot
capture: the detailed organization of brain areas, the enor-
mous number of neurons �approximately 1011�, and the large
average number of synapses connecting to every neuron �ap-
proximately 104 for cortical neurons� �32�. While it can be
assumed that the detailed organization is only of secondary
importance for the questions at hand, it is clear that the level
of neuronal activity depends on the average number of syn-
aptic inputs. As we will see in the following, the activity
self-organizes to a certain level. Setting the number of syn-
apses to a low �high� value therefore causes the synaptic
conductances to self-organize to correspondingly high �low�
levels. Conversely, if we fix the synaptic conductance at a
low �high� level, the number of synapses self-organizes to a
high �low� value in turn. Therefore �unrealistically�, strong
synapses have to be assumed in numerical simulations to
keep the number of synapses in a feasible range. The impact
of this assumption is discussed below.

Apart from the synaptic conductances gc=0.15 all other
parameters are set to realistic values. Specifically, �m
=30.0 ms, V0=0.0 mV, Vreset=13.5 mV, Vth=15.0 mV,
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Vrev=33.5 mV, �delay=1.0 ms, �ref=3.0 ms, and �STDP
=5.0 ms �33–35�.

III. RESULTS

As a first test for self-organization, we monitor the con-
nectivity of the model networks, while they evolve under the
influence of the STDP update rule. For this purpose the first
variant of the update rule is used. Starting with random net-
works with each neuron having on average synaptic connec-
tions to K other neurons, the system approaches a character-
istic connectivity Kev independent of initial conditions. A
representative set of time series is shown in Fig. 1. Addi-
tional investigations �not shown� confirm that Kev is robust
against variation of numerical constants such as tsim.

In order to investigate how our assumptions affect the
self-organized level of connectivity, we simulate the evolu-
tion of networks for different synaptic strengths and network
sizes. We find that the value of Kev scales with the system
size according to the scaling law,

Kev − K� = aN−�, �3�

shown in Fig. 2. The best fit to the numerical observations is
provided by the parameter values K�=2.58, a=266.1, and
�=1.382. Computing similar fits for different values of the
synaptic conductance, we find the scaling law

K��gc� = bgc
−� + c , �4�

with b=0.1633, �=1.565, and c=−0.3916 �see Fig. 2 inset�.
In real neural networks, a few tens of simultaneous exci-

tatory postsynaptic potentials are sufficient to elevate the
membrane potential from its reset value to spike the thresh-
old �32�. A typical number is about 20 inputs corresponding
to a conductance of gc=0.000 375 in our model. Substituting
this value into Eq. �4� we obtain K��40 000. While this
extrapolation certainly provides only a very rough estimate,
it is reassuring to see that the result is in the order of mag-
nitude of the connectivity observed for cortical neurons �36�.

To show that the state approached by the network is criti-
cal, we first investigate the dynamics on random networks

without synaptic plasticity, so that the topology remains
static. Previous studies �17,18� have shown that it is advan-
tageous to quantify the dynamics by defining an order pa-
rameter Csyn�K� as the average over the correlations between
pairs of neurons i , j,

Ci,j��� =
1

� + 1 �
t=t0

t0+�

	i�t�	 j�t� , �5�

where 	i�t� is 1 if the neuron i spiked at time t and zero,
otherwise. This quantity is evaluated over a time �, which we
consider equal to tsim. Figure 3 shows Csyn averaged over
random network topologies, for different connectivities and
network sizes. This averaged order parameter, �Csyn�, in-
creases at a threshold around K=2.5, which becomes more
pronounced in larger networks indicating the existence of a
continuous phase transition corresponding to the onset of
synchrony in neural activity in the limit of large network
size.

As a second step, we compute the net gain of links if the
STDP rule was applied. Figure 3 shows that the STDP in-
creases the connectivity of sparsely connected networks but
decreases the connectivity of more densely connected net-
works. This constitutes an effective force toward the phase
transition at K�.

The critical threshold KSTDP at which the transition occurs
in Fig. 3 corresponds approximately to the self-organized
connectivity K� in the dynamic network. An exact match
cannot be expected since the evolved networks are no longer
random graphs but may exhibit long-range correlations in the
topology that shift the threshold to higher or lower connec-
tivities.

A hallmark of continuous phase transitions is the power-
law distribution of microscopic variables related to the order
parameter. We therefore compute the distribution of the
spike-time correlation Csyn in the evolving networks. In the
self-organized state, we find Csyn to be distributed according
to a power law �Fig. 4�. While our numerical approach im-

FIG. 1. Self-organization of network connectivity. Starting from
different initial conditions different networks approach the same
final level of self-organized connectivity. The exemplary data
shown here were obtained in simulations of networks of N=500
neurons. While the time-scale separation makes it difficult to relate
the iterations directly to biological time the 20 000 iterations in this
figure correspond to at least 6000 s.

FIG. 2. �Color online� Scaling of the self-organized connectiv-
ity. The final value of connectivity approached in simulation fol-
lows a power-law depending on the number of neurons N and syn-
aptic conductances gc �inset�. The values shown were found by
averaging over 30000 iterations and three estimates of the connec-
tivity K�.
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poses strong cutoffs, already the observation of power-law
scaling of the variable associated with the order parameter
over one decade provides additional evidence for the dy-
namical criticality in the evolved state. Our results are remi-
niscent of recent functional MRI and MEG measurements in
human brains, which demonstrated a remarkably robust
power-law scaling of two different synchronization measures
over a broad range of frequencies and different pairs of ana-
tomical regions �14�.

A current question not yet fully resolved by empirical data
concerns the distribution of synaptic weights in real neural
networks. To investigate this distribution in our model, we
abandon the deletion and creation of synapses and instead
switch to the variant STDP update rule in which the weights
of the synapses are increased or decreased. With the variant
update rule, we observe that the connectivity, now defined as
K=�i,jwij /N, approaches the same value KSTDP that is found
with the Boolean update rule. In the critical state a large
fraction of synaptic weights is zero, which is in agreement
with empirical evidence �37�. In our simulation the exact size
of this fraction depends strongly on the number of synapses.

As shown in Fig. 4, the distribution of synaptic weights in
the evolved state follows a power law with an exponent of
−1.5. The self-organization to an identical distribution was
also observed in further simulations �not shown� using dif-
ferent and/or asymmetric values of � for strengthening or
weakening updates, as proposed in �29�. Interestingly, a simi-

lar scaling behavior regarding the observed power law for
synaptic strengths in our model was found to play a role in
models of network pruning �38�. The authors relate this ob-
servation to the sparseness of networks, which is also an
outcome of the present model.

For comparison of the self-organized distribution with
empirical data, Fig. 4 also shows measurements of synaptic
weights from somatic recordings of different anatomical ar-
eas in the brain �39–45� summarized in �37�. From these
recordings the two smallest values are neglected since mea-
surements of small weights are typically underestimated as
they are likely to fall below the detection threshold �37�.
Comparing the combined data sets to the numerical results
reveals a close resemblance. While this could be interpreted
as an indication that the brain as a whole is in a self-
organized critical state, such a claim is highly questionable
as, at least, the organization into different brain areas is cer-
tainly not self-organized. Considered individually, the data
sets curve slightly downward in the double-logarithmic plot,
which is indicative of an exponential distribution �46�. How-
ever, statistical tests �47� reveal that a power-law relationship
cannot be excluded at least for cortexL2 �1�, cortexL2 �2�,
cortexL5 �2�, hippocampus, and cerebellum. The exponent
providing the best fit for such a power law closely matches
the value of −1.5 found in our simulations.

FIG. 3. Self-organization to the synchronization phase transi-
tion. Top: synchrony of spikes in static networks, measured in terms
the order parameter �Csyn�K�� as a function of the connectivity K.
The presence of a threshold at K�2.5 �line� is indicative of the
existence of a phase transition in the limit of large network size.
Bottom: change in connectivity, expressed by the expected average
net gain of links per iteration. Links are added if network connec-
tivity is below the threshold and deleted if it is above the threshold,
constituting a driving force toward the phase transition. Samples are
averaged over 104 random initial conditions for N=100 and 103

random initial conditions for N=10 000 and 1000.

FIG. 4. �Color online� Power-law distributions in the self-
organized state. Top: distribution of the measure for spike-time syn-
chrony Csyn at the self-organized state. The distribution follows a
power law with an exponent of −2 as indicated by the dashed line.
Bottom: distribution of synaptic weights in a self-organized critical
state together with probability densities of synaptic weights from
experimental data �37�. Synaptic weights of experimental data are
in mV and the probability density is in mV−1, respectively. The
dashed line indicates a power law with an exponent of −1.5. The
data shown were computed in a network with N=1000 and �
=0.01.
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IV. DISCUSSION

In this work we have investigated a realistic model of
neural networks, capturing the interplay between the
integrate-and-fire dynamics of neurons and spike-time-
dependent synaptic plasticity. We observed that the networks
robustly evolved to a state characterized by the presence of
power laws in the distribution of synaptic conductances and
the synchronization order parameter Csyn.

Our results provide strong evidence for self-organized
criticality. In particular they indicate that a previously pro-
posed mechanism, based on the interplay between dynamics
and topology in adaptive networks �17,18�, can robustly self-
organize realistic models of neural networks to critical states.
This suggests that this mechanism could also drive the self-
organization to criticality recently observed in other models
�21,22,48�.

Apart from the higher degree of realism, our model differs
from previous works in the nature of the synaptic plasticity.
We find that spike-time-dependent plasticity drives the net-
work to a critical state that marks the onset of synchronous
activity. By contrast, previous models based on activity-
dependent update rules found a self-organization toward a
different critical state corresponding to an order-disorder
phase transition �17,22�. Since both types of plasticity have
been observed in nature it is promising to study their com-
bined effect in future models. It is interesting to note that the
order-disorder transition mainly depends on the average con-
nectivity of the network, while the synchronization transition
is much more sensitive to larger topological motifs. The
combined effect of activity-dependent and spike-time-
dependent mechanisms could therefore potentially self-
organize the network to both thresholds simultaneously.

One question that we have not studied in detail in this
work concerns the topology that evolves in the model. How-
ever, the observation of sustained activity in relatively small
networks with realistic refractory times suggests the evolu-
tion of highly nonrandom topologies on which activity can
propagate similarly to synfire chains. Results from an earlier
work showed that STDP can reorganize a globally connected
neural network into a functional network, which is both
small world and scale free with a degree distribution follow-
ing a power law with an exponent similar to the one for
synaptic weights in our model �21�. Similarly �23� showed
that Hebbian learning can rewire the network to show small-

world properties and operate at the edge of chaos. Robust
self-organization of scale-free topologies was also observed
in a study of spike-time-dependent network modifications
with node dynamics based on coupled logistic maps �49�.

Certainly the most important question is if the mechanism
studied here is also at work in real neural networks. To this
end note that our observations were based on the interplay
between two well-accepted ingredients: spike-time-
dependent plasticity and integrate-and-fire neurons. We ob-
served that the coupling of these ingredients yields results
that are in good agreement with empirical observations. We
therefore conclude that also the self-organization to critical-
ity should take place in nature, unless factors exist that spe-
cifically disrupt it. The evolution of such factors should be
disfavored as critical states are believed to be advantageous
for information processing. Furthermore, the basic adaptive
mechanism for self-organization, considered here, has by
now been observed in several different models. It is therefore
unlikely that this mechanism is disrupted by specific details
rooted in the biochemistry and biophysics of the neurons.
Also, the local nature of the mechanism conveys a high ro-
bustness against noise �17�, which appears in real-world net-
works due to true stochasticity and in the form of external
inputs. Finally, finite-size effects, which strongly constrain
self-organized criticality in many systems, are unlikely to
play a role in human cortical networks because of the large
number of neurons and synapses. Therefore, the observation
of self-organization to criticality in the realistic model, stud-
ied here, shows that similar self-organization in real neural
networks is likely.

Perhaps the most controversial prediction of the current
model is that synaptic weights should follow a power law.
Although it is often assumed that the real weight distribution
is exponential, to our knowledge, no mechanistic model re-
producing the observed distributions has been proposed.
Moreover, at least in certain brain areas, the hypothesis that
synaptic weights are distributed according to a power law
cannot be rejected on empirical grounds. While further in-
vestigations are certainly necessary, the mechanism studied
here can therefore potentially provide a rationale explaining
the observed distributions in these brain areas.
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